Text Is All You Need: Learning Language Representations for Sequential Recommendation

Jiacheng Li University of California, San Diego j9li@eng.ucsd.edu

> Jinmiao Fu Amazon, United States jinnmiaof@amazon.com

Ming Wang Amazon, United States mingww@amazon.com

Xin Shen Amazon, United States xinshen@amazon.com

Julian McAuley University of California, San Diego jmcauley@eng.ucsd.edu

KDD 2023

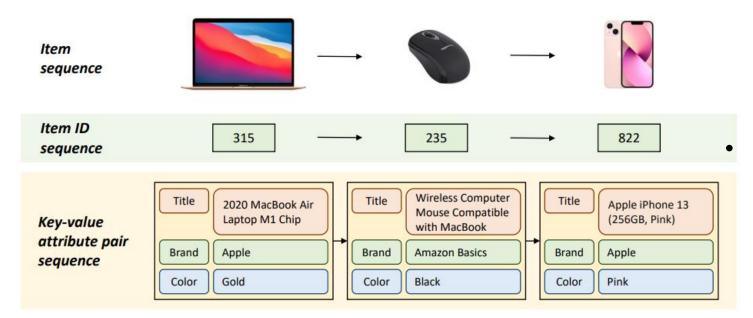
Jin Li Amazon, United States jincli@amazon.com

Jingbo Shang University of California, San Diego jshang@eng.ucsd.edu

Code will be released upon acceptance.

Reported by Zicong Dou

Introduction



Contributions:

We formulate items as key-value attribute pairs for the ID free sequential recommendation and propose a bidirectional Transformer structure to encode sequences of key-value pairs.

Figure 1: Input data comparison between item ID sequences for traditional sequential recommendation and key-value attribute pair sequences used in Recformer.

We design the learning framework that helps the model learn users' preferences and transfer knowledge into different recommendation domains and cold-start items.

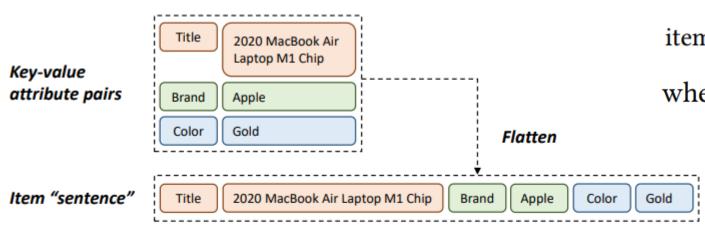


Figure 2: Model input construction. Flatten key-value attribute pairs into an item "sentence".

Problem Setup and Formulation

item set
$$I$$
 $s = \{i_1, i_2, \dots, i_n\}$

where *n* is the length of *s* and $i \in \mathcal{I}$

attribute dictionary D_i

$$\{(k_1, v_1), (k_2, v_2), \ldots, (k_m, v_m)\}\$$

$$(k, v) = \{w_1^k, \dots, w_c^k, w_1^v, \dots, w_c^v\}$$

$$T_i = \{k1, v1, k2, v2, \dots, k_m, v_m\}$$

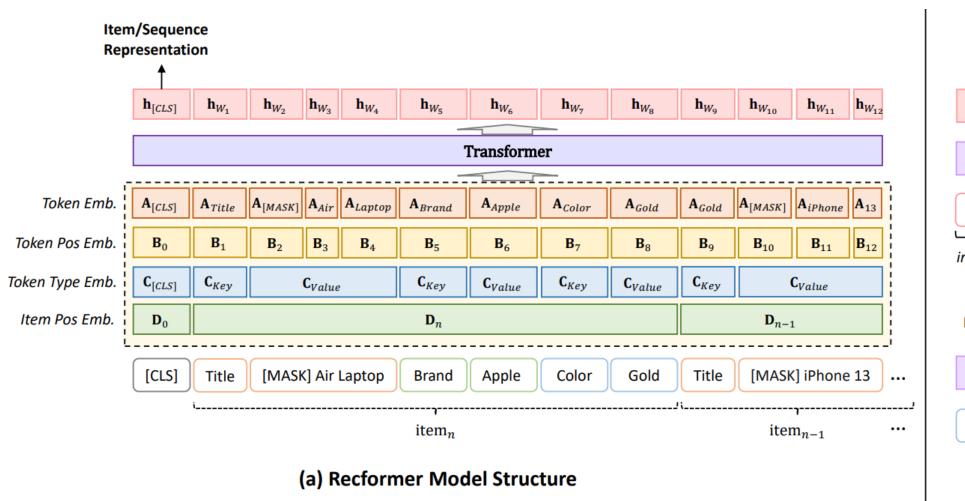
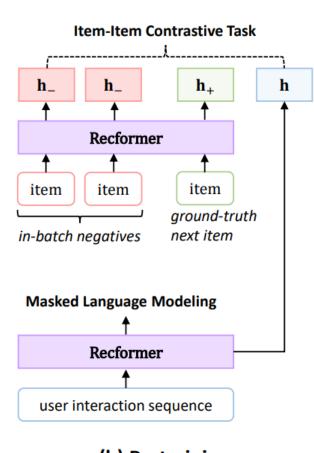
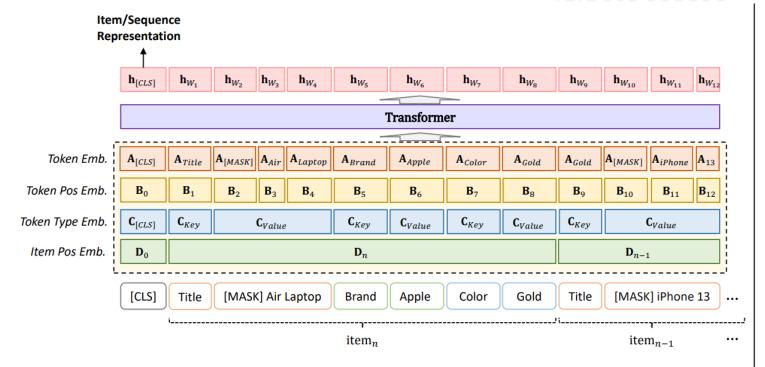


Figure 3: The overall framework of RECFORMER.



(b) Pretraining

(2)



Embedding Layer Item-Item Contrastive Task h_{+} Token embedding Recformer $\mathbf{A} \in \mathbb{R}^{V_w \times d}$ item item item Token position embedding around-truth in-batch negatives next item $\mathbf{B}_i \in \mathbb{R}^d$ **Masked Language Modeling** Token type embedding Recformer $C_{[CLS]}, C_{Kev}, C_{Value} \in \mathbb{R}^d$ user interaction sequence **Item position embedding** (b) Pretraining $\mathbf{D}_k \in \mathbb{R}^d \ \mathbf{D} \in \mathbb{R}^{n \times d}$

(a) Recformer Model Structure

Model Inputs.

Figure 3: The overall framework of RECFORMER.

$$T_{i} = \{k1, v1, k2, v2, \dots, k_{m}, v_{m}\}\$$

$$(k, v) = \{w_{1}^{k}, \dots, w_{c}^{k}, w_{1}^{v}, \dots, w_{c}^{v}\}\$$

$$s = \{i_{1}, i_{2}, \dots, i_{n}\} \quad \{i_{n}, i_{n-1}, \dots, i_{1}\}\$$

$$X = \{ [CLS], T_n, T_{n-1}, \dots, T_1 \}$$
 (1)

$$\mathbf{E}_{w} = \text{LayerNorm}(\mathbf{A}_{w} + \mathbf{B}_{w} + \mathbf{C}_{w} + \mathbf{D}_{w}) \qquad (2)$$

$$\text{where } \mathbf{E}_{w} \in \mathbb{R}^{d}$$

$$\mathbf{E}_X = [\mathbf{E}_{[\mathsf{CLS}]}, \mathbf{E}_{w_1}, \dots, \mathbf{E}_{w_l}] \tag{3}$$

where $\mathbf{E}_X \in \mathbb{R}^{(l+1)\times d}$ and l is the maximum length of tokens in a user's interaction sequence.

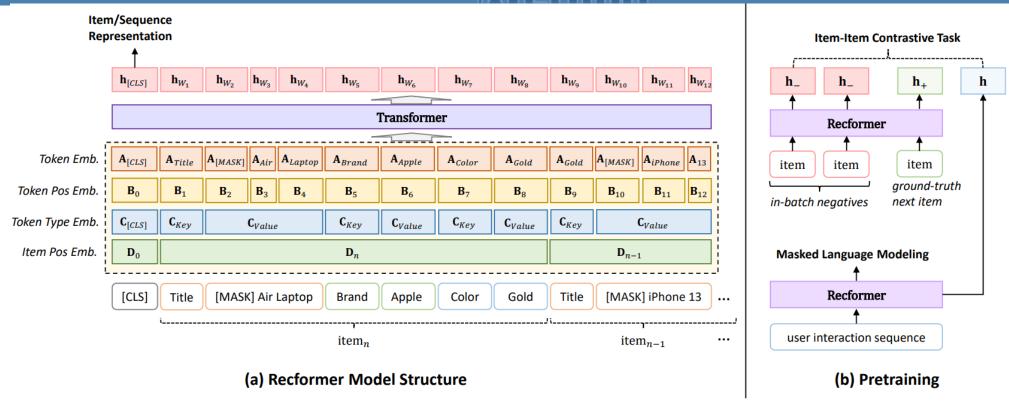


Figure 3: The overall framework of RECFORMER.

$$[\mathbf{h}_{\texttt{[CLS]}}, \mathbf{h}_{w_1}, \dots, \mathbf{h}_{w_l}] = \text{Longformer}([\mathbf{E}_{\texttt{[CLS]}}, \mathbf{E}_{w_1}, \dots, \mathbf{E}_{w_l}])$$
 (4) where $\mathbf{h}_w \in \mathbb{R}^d$

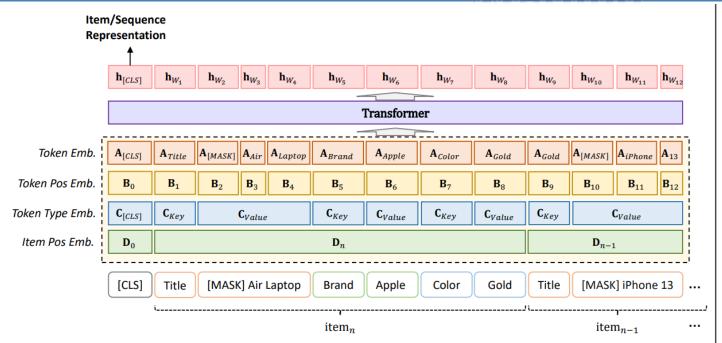
$$X = \{ [CLS], T_i \} \quad \mathbf{h}_{[CLS]} \quad \mathbf{h}_i$$

$$\mathbf{h}_i^{\mathsf{T}} \mathbf{h}_s$$

$$\hat{l_s} = \operatorname{argmax}_{i \in I}(r_{i,s})$$
(6)

 $r_{i,s} = \frac{\mathbf{h}_i^{\mathsf{T}} \mathbf{h}_s}{\|\mathbf{h}_i\| \cdot \|\mathbf{h}_s\|}$ (5) where \hat{i}_s is the predicted item given user interaction sequence s.

where $r_{i,s} \in \mathbb{R}$ is the relevance of item *i* being the next item given *s*.



(a) Recformer Model Structure

we replace the token with (1) the [MASK] with probability 80%; (2) a random token with probability 10%; (3) the unchanged token with probability 10%. The MLM loss is calculated as:

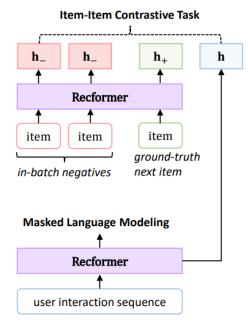
$$\mathbf{m} = \text{LayerNorm}(\text{GELU}(\mathbf{W}_h \mathbf{h}_w + \mathbf{b}_h))$$
 (7)

$$p = \text{Softmax}(\mathbf{W}_0 \mathbf{m} + \mathbf{b}_0) \tag{8}$$

$$\mathcal{L}_{\text{MLM}} = -\sum_{i=0}^{|\mathcal{V}|} y_i \log(p_i) \tag{9}$$

where $\mathbf{W}_h \in \mathbb{R}^{d \times d}$, $\mathbf{b}_h \in \mathbb{R}^d$, $\mathbf{W}_0 \in \mathbb{R}^{|\mathcal{V}| \times d}$, $\mathbf{b}_0 \in \mathbb{R}^{|\mathcal{V}|}$, GELU is

the GELU activation function [10] and V is the vocabulary used in the language model.



(b) Pretraining

$$\mathcal{L}_{\text{IIC}} = -\log \frac{e^{\sin(\mathbf{h}_s, \mathbf{h}_i^+)/\tau}}{\sum_{i \in \mathcal{B}} e^{\sin(\mathbf{h}_s, \mathbf{h}_i)/\tau}}$$
(10)

 \mathbf{h}_{i}^{+} is the representation of the ground truth next item;

 ${\mathcal B}$ is the ground truth item set in one batch and au is a temperature parameter.

$$\mathcal{L}_{PT} = \mathcal{L}_{IIC} + \lambda \cdot \mathcal{L}_{MLM} \tag{11}$$

$$\mathcal{L}_{\text{FT}} = -\log \frac{e^{\sin(\mathbf{h}_s, \mathbf{I}_i^+)/\tau}}{\sum_{i \in \mathcal{I}} e^{\sin(\mathbf{h}_s, \mathbf{I}_i)/\tau}}$$
(12)

where I_i is the item feature of item i.

Table 1: Statistics of the datasets after preprocessing. Avg. n denotes the average length of item sequences.

Datasets	#Users	#Items	#Inters.	Avg. n	Density
Pre-training	3,613,906	1,022,274	33,588,165	9.29	9.1e-6
-Training	3,501,527	954,672	32,291,280	9.22	9.0e-6
-Validation	112,379	67,602	1,296,885	11.54	1.7e-4
Scientific	11,041	5,327	76,896	6.96	1.3e-3
Instruments	27,530	10,611	231,312	8.40	7.9e-4
Arts	56,210	22,855	492,492	8.76	3.8e-4
Office	101,501	27,932	798,914	7.87	2.8e-4
Games	11,036	15,402	100,255	9.08	5.9e-4
Pet	47,569	37,970	420,662	8.84	2.3e-4

Table 2: Performance comparison of different recommendation models. The best and the second-best performance is bold and underlined respectively. Improv. denotes the relative improvement of Recformer over the best baselines.

		ID-Only Methods			ID-Text Methods		Text-Only Methods			Improv.	
Dataset	Metric	GRU4Rec	SASRec	BERT4Rec	RecGURU	FDSA	S ³ -Rec	ZESRec	UniSRec	RECFORMER	_
	NDCG@10	0.0826	0.0797	0.0790	0.0575	0.0716	0.0451	0.0843	0.0862	0.1027	19.14%
	Recall@10	0.1055	0.1305	0.1061	0.0781	0.0967	0.0804	0.1260	0.1255	0.1448	10.96%
	MRR	0.0702	0.0696	0.0759	0.0566	0.0692	0.0392	0.0745	0.0786	0.0951	20.99%
	NDCG@10	0.0633	0.0634	0.0707	0.0468	0.0731	0.0797	0.0694	0.0785	0.0830	4.14%
Instruments	Recall@10	0.0969	0.0995	0.0972	0.0617	0.1006	0.1110	0.1078	0.1119	0.1052	-
MRR	MRR	0.0707	0.0577	0.0677	0.0460	0.0748	0.0755	0.0633	0.0740	0.0807	6.89%
	NDCG@10	0.1075	0.0848	0.0942	0.0525	0.0994	0.1026	0.0970	0.0894	0.1252	16.47%
	Recall@10	0.1317	0.1342	0.1236	0.0742	0.1209	0.1399	0.1349	0.1333	0.1614	15.37%
	MRR	0.1041	0.0742	0.0899	0.0488	0.0941	0.1057	0.0870	0.0798	0.1189	12.49%
	NDCG@10	0.0761	0.0832	0.0972	0.0500	0.0922	0.0911	0.0865	0.0919	0.1141	17.39%
Office	Recall@10	0.1053	0.1196	0.1205	0.0647	0.1285	0.1186	0.1199	0.1262	0.1403	9.18%
1	MRR	0.0731	0.0751	0.0932	0.0483	0.0972	0.0957	0.0797	0.0848	0.1089	12.04%
	NDCG@10	0.0586	0.0547	0.0628	0.0386	0.0600	0.0532	0.0530	0.0580	0.0684	8.92%
Games	Recall@10	0.0988	0.0953	0.1029	0.0479	0.0931	0.0879	0.0844	0.0923	0.1039	0.97%
	MRR	0.0539	0.0505	0.0585	0.0396	0.0546	0.0500	0.0505	0.0552	0.0650	11.11%
Pet	NDCG@10	0.0648	0.0569	0.0602	0.0366	0.0673	0.0742	0.0754	0.0702	0.0972	28.91%
	Recall@10	0.0781	0.0881	0.0765	0.0415	0.0949	0.1039	0.1018	0.0933	0.1162	11.84%
	MRR	0.0632	0.0507	0.0585	0.0371	0.0650	0.0710	0.0706	0.0650	0.0940	32.39%

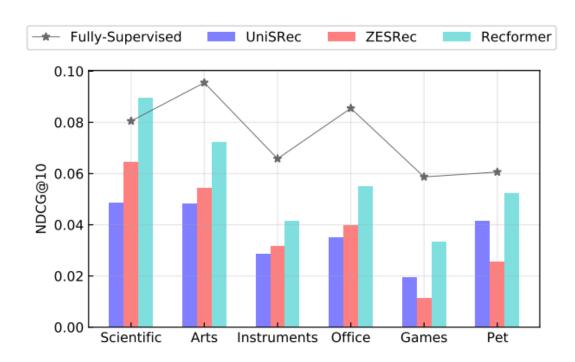


Figure 4: Performance (NDCG@10) of three Text-Only methods under the zero-shot setting. Fully-Supervised denotes the average scores of three classical ID-Only methods (i.e., SAS-Rec, BERT4Rec, GRU4Rec) trained with all training data.

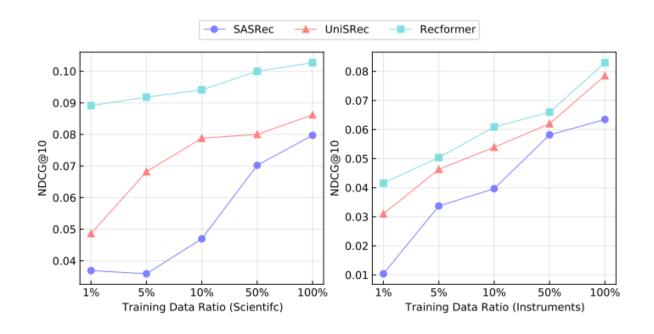


Figure 5: Performance (NDCG@10) of SASRec, UniSRec, Recformer over different sizes (i.e., 1%, 5%, 10%, 50%, 100%) of training data.

Experiments

Table 3: Performance of models compared between in-set items and cold-start items on four datasets. N@10 and R@10 stand for NDCG@10 and Recall@10 respectively.

		SASRec		Unis	SRec	Recformer		
Dataset	Metric	In-Set	Cold	In-Set	Cold	In-Set	Cold	
Scientific	N@10	0.0775	0.0213	0.0864	0.0441	0.1042	0.0520	
	R@10	0.1206	0.0384	0.1245	0.0721	0.1417	0.0897	
Instruments	N@10	0.0669	0.0142	0.0715	0.0208	0.0916	0.0315	
	R@10	0.1063	0.0309	0.1094	0.0319	0.1130	0.0468	
Arts	N@10	0.1039	0.0071	0.1174	0.0395	0.1568	0.0406	
	R@10	0.1645	0.0129	0.1736	0.0666	0.1866	0.0689	
Pet	N@10	0.0597	0.0013	0.0771	0.0101	0.0994	0.0225	
	R@10	0.0934	0.0019	0.1115	0.0175	0.1192	0.0400	

Table 4: Ablation study on two downstream datasets. The best and the second-best scores are bold and underlined respectively.

Variants	5	Scientific		Instruments			
V W2 200220	NDCG@10	Recall@10	MRR	NDCG@10	Recall@10	MRR	
(0) Recformer	0.1027	0.1448	0.0951	0.0830	0.1052	0.0807	
(1) w/o two-stage finetuning	0.1023	0.1442	0.0948	0.0728	0.1005	0.0685	
(1) + (2) freezing word emb. & item emb.	0.1026	0.1399	0.0942	0.0728	0.1015	0.0682	
(1) + (3) trainable word emb. & item emb.	0.0970	0.1367	0.0873	0.0802	0.1015	0.0759	
(1) + (4) trainable item emb. & freezing word emb.	0.0965	0.1383	0.0856	0.0801	$\overline{0.1014}$	0.0760	
(5) w/o pre-training	0.0722	0.1114	0.0650	0.0598	0.0732	0.0584	
(6) w/o item position emb. & token type emb.	0.1018	0.1427	0.0945	0.0518	0.0670	0.0501	

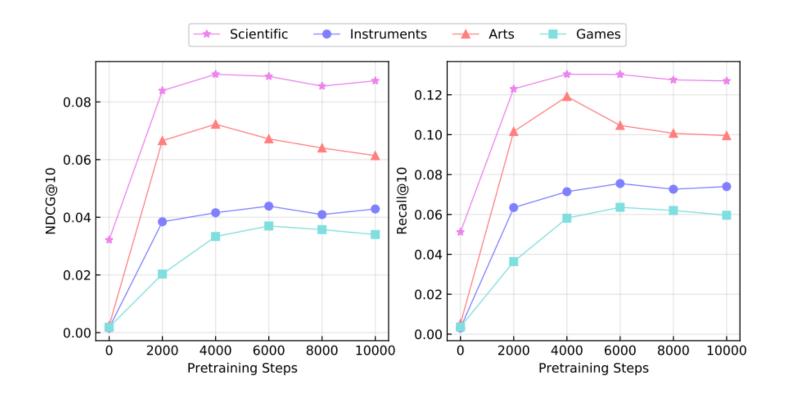


Figure 6: Recformer zero-shot recommendation performance (NDCG@10 and Recall@10) over different pretraining steps.

Algorithm 1: Two-Stage Finetuning

```
1 Input: D_{\text{train}}, D_{\text{valid}}, I, M
_2 Hyper-parameters: n_{\text{epoch}}
з Output: M', I'
     1: M \leftarrow initialized with pre-trained parameters
     2: p \leftarrow metrics are initialized with 0
         Stage 1
     3: for n in n_{\text{epoch}} do
            I \leftarrow \text{Encode}(M, I)
            M \leftarrow \operatorname{Train}(M, \mathbf{I}, D_{\operatorname{train}})
           p' \leftarrow \text{Evaluate}(M, \mathbf{I}, D_{\text{valid}})
         if p' > p then
            M', I' \leftarrow M, I
                p \leftarrow p'
             end if
    10:
    11: end for
         Stage 2
    12: M \leftarrow M'
    13: for n in n_{\text{epoch}} do
             M \leftarrow \operatorname{Train}(M, \mathbf{I'}, D_{\operatorname{train}})
            p' \leftarrow \text{Evaluate}(M, \mathbf{I}', D_{\text{valid}})
           if p' > p then
                M' \leftarrow M
    17:
                p \leftarrow p'
             end if
    20: end for
    21: return M', I'
```